Migrate from TypeORM
This guide describes how to migrate from TypeORM to Prisma ORM. It uses an extended version of the TypeORM Express example as a sample project to demonstrate the migration steps. You can find the example used for this guide on GitHub.
This migration guide uses PostgreSQL as the example database, but it equally applies to any other relational database that's supported by Prisma ORM.
You can learn how Prisma ORM compares to TypeORM on the Prisma ORM vs TypeORM page.
Overview of the migration process
Note that the steps for migrating from TypeORM to Prisma ORM are always the same, no matter what kind of application or API layer you're building:
- Install the Prisma CLI
- Introspect your database
- Create a baseline migration
- Install Prisma Client
- Gradually replace your TypeORM queries with Prisma Client
These steps apply, no matter if you're building a REST API (e.g. with Express, koa or NestJS), a GraphQL API (e.g. with Apollo Server, TypeGraphQL or Nexus) or any other kind of application that uses TypeORM for database access.
Prisma ORM lends itself really well for incremental adoption. This means, you don't have migrate your entire project from TypeORM to Prisma ORM at once, but rather you can step-by-step move your database queries from TypeORM to Prisma ORM.
Overview of the sample project
For this guide, we'll use a REST API built with Express as a sample project to migrate to Prisma ORM. It has four models/entities:
- User.ts
- Post.ts
- Profile.ts
- Category.ts
@Entity()
export class User {
@PrimaryGeneratedColumn()
id: number
@Column({ nullable: true })
name: string
@Column({ unique: true })
email: string
@OneToMany((type) => Post, (post) => post.author)
posts: Post[]
@OneToOne((type) => Profile, (profile) => profile.user, { cascade: true })
profile: Profile
}
@Entity()
export class Post {
@PrimaryGeneratedColumn()
id: number
@Column()
title: string
@Column({ nullable: true })
content: string
@Column({ default: false })
published: boolean
@ManyToOne((type) => User, (user) => user.posts)
author: User
@ManyToMany((type) => Category, (category) => category.posts)
@JoinTable()
categories: Category[]
}
@Entity()
export class Profile {
@PrimaryGeneratedColumn()
id: number
@Column({ nullable: true })
bio: string
@OneToOne((type) => User, (user) => user.profile)
@JoinColumn()
user: User
}
@Entity()
export class Category {
@PrimaryGeneratedColumn()
id: number
@Column()
name: string
@ManyToMany((type) => Post, (post) => post.categories)
posts: Post[]
}
The models have the following relations:
- 1-1:
User
↔Profile
- 1-n:
User
↔Post
- m-n:
Post
↔Category
The corresponding tables have been created using a generated TypeORM migration.
Expand to view details of the migration
The migration has been created using
typeorm migration:generate -n Init
This created the following migration file:
import { MigrationInterface, QueryRunner } from 'typeorm'
export class Init1605698662257 implements MigrationInterface {
name = 'Init1605698662257'
public async up(queryRunner: QueryRunner): Promise<void> {
await queryRunner.query(
`CREATE TABLE "profile" ("id" SERIAL NOT NULL, "bio" character varying, "userId" integer, CONSTRAINT "REL_a24972ebd73b106250713dcddd" UNIQUE ("userId"), CONSTRAINT "PK_3dd8bfc97e4a77c70971591bdcb" PRIMARY KEY ("id"))`
)
await queryRunner.query(
`CREATE TABLE "user" ("id" SERIAL NOT NULL, "name" character varying, "email" character varying NOT NULL, CONSTRAINT "UQ_e12875dfb3b1d92d7d7c5377e22" UNIQUE ("email"), CONSTRAINT "PK_cace4a159ff9f2512dd42373760" PRIMARY KEY ("id"))`
)
await queryRunner.query(
`CREATE TABLE "post" ("id" SERIAL NOT NULL, "title" character varying NOT NULL, "content" character varying, "published" boolean NOT NULL DEFAULT false, "authorId" integer, CONSTRAINT "PK_be5fda3aac270b134ff9c21cdee" PRIMARY KEY ("id"))`
)
await queryRunner.query(
`CREATE TABLE "category" ("id" SERIAL NOT NULL, "name" character varying NOT NULL, CONSTRAINT "PK_9c4e4a89e3674fc9f382d733f03" PRIMARY KEY ("id"))`
)
await queryRunner.query(
`CREATE TABLE "post_categories_category" ("postId" integer NOT NULL, "categoryId" integer NOT NULL, CONSTRAINT "PK_91306c0021c4901c1825ef097ce" PRIMARY KEY ("postId", "categoryId"))`
)
await queryRunner.query(
`CREATE INDEX "IDX_93b566d522b73cb8bc46f7405b" ON "post_categories_category" ("postId") `
)
await queryRunner.query(
`CREATE INDEX "IDX_a5e63f80ca58e7296d5864bd2d" ON "post_categories_category" ("categoryId") `
)
await queryRunner.query(
`ALTER TABLE "profile" ADD CONSTRAINT "FK_a24972ebd73b106250713dcddd9" FOREIGN KEY ("userId") REFERENCES "user"("id") ON DELETE NO ACTION ON UPDATE NO ACTION`
)
await queryRunner.query(
`ALTER TABLE "post" ADD CONSTRAINT "FK_c6fb082a3114f35d0cc27c518e0" FOREIGN KEY ("authorId") REFERENCES "user"("id") ON DELETE NO ACTION ON UPDATE NO ACTION`
)
await queryRunner.query(
`ALTER TABLE "post_categories_category" ADD CONSTRAINT "FK_93b566d522b73cb8bc46f7405bd" FOREIGN KEY ("postId") REFERENCES "post"("id") ON DELETE CASCADE ON UPDATE NO ACTION`
)
await queryRunner.query(
`ALTER TABLE "post_categories_category" ADD CONSTRAINT "FK_a5e63f80ca58e7296d5864bd2d3" FOREIGN KEY ("categoryId") REFERENCES "category"("id") ON DELETE CASCADE ON UPDATE NO ACTION`
)
}
public async down(queryRunner: QueryRunner): Promise<void> {
await queryRunner.query(
`ALTER TABLE "post_categories_category" DROP CONSTRAINT "FK_a5e63f80ca58e7296d5864bd2d3"`
)
await queryRunner.query(
`ALTER TABLE "post_categories_category" DROP CONSTRAINT "FK_93b566d522b73cb8bc46f7405bd"`
)
await queryRunner.query(
`ALTER TABLE "post" DROP CONSTRAINT "FK_c6fb082a3114f35d0cc27c518e0"`
)
await queryRunner.query(
`ALTER TABLE "profile" DROP CONSTRAINT "FK_a24972ebd73b106250713dcddd9"`
)
await queryRunner.query(`DROP INDEX "IDX_a5e63f80ca58e7296d5864bd2d"`)
await queryRunner.query(`DROP INDEX "IDX_93b566d522b73cb8bc46f7405b"`)
await queryRunner.query(`DROP TABLE "post_categories_category"`)
await queryRunner.query(`DROP TABLE "category"`)
await queryRunner.query(`DROP TABLE "post"`)
await queryRunner.query(`DROP TABLE "user"`)
await queryRunner.query(`DROP TABLE "profile"`)
}
}
As mentioned before, this guide is an extended variation of the TypeORM Express example and uses the same file structure. The route handlers are located in the src/controller
directory. From there, they are pulled into a central src/routes.ts
file which is used to set up the required routes in src/index.ts
:
└── blog-typeorm
├── ormconfig.json
├── package.json
├── src
│ ├── controllers
│ │ ├── AddPostToCategoryAction.ts
│ │ ├── CreateDraftAction.ts
│ │ ├── CreateUserAction.ts
│ │ ├── FeedAction.ts
│ │ ├── FilterPostsAction.ts
│ │ ├── GetPostByIdAction.ts
│ │ └── SetBioForUserAction.ts
│ ├── entity
│ │ ├── Category.ts
│ │ ├── Post.ts
│ │ ├── Profile.ts
│ │ └── User.ts
│ ├── index.ts
│ ├── migration
│ │ └── 1605698662257-Init.ts
│ └── routes.ts
└── tsconfig.json
Step 1. Install the Prisma CLI
The first step to adopt Prisma ORM is to install the Prisma CLI in your project:
npm install prisma --save-dev
Step 2. Introspect your database
2.1. Set up Prisma ORM
Before you can introspect your database, you need to set up your Prisma schema and connect Prisma to your database. Run the following command in your terminal to create a basic Prisma schema file:
npx prisma init
This command created a new directory called prisma
with the following files for you:
schema.prisma
: Your Prisma schema that specifies your database connection and models.env
: Adotenv
to configure your database connection URL as an environment variable
The Prisma schema currently looks as follows:
// This is your Prisma schema file,
// learn more about it in the docs: https://pris.ly/d/prisma-schema
datasource db {
provider = "postgresql"
url = env("DATABASE_URL")
}
generator client {
provider = "prisma-client-js"
}
If you're using VS Code, be sure to install the Prisma VS Code extension for syntax highlighting, formatting, auto-completion and a lot more cool features.
2.2. Connect your database
If you're not using PostgreSQL, you need to adjust the provider
field on the datasource
block to the database you currently use:
- PostgreSQL
- MySQL
- Microsoft SQL Server
- SQLite
datasource db {
provider = "postgresql"
url = env("DATABASE_URL")
}
datasource db {
provider = "mysql"
url = env("DATABASE_URL")
}
datasource db {
provider = "sqlserver"
url = env("DATABASE_URL")
}
datasource db {
provider = "sqlite"
url = env("DATABASE_URL")
}
Once that's done, you can configure your database connection URL in the .env
file. Here's how the database connection from TypeORM maps to the connection URL format used by Prisma ORM:
- PostgreSQL
- MySQL
- Microsoft SQL Server
- SQLite
Assume you have the following database connection details in ormconfig.json
:
{
"type": "postgres",
"host": "localhost",
"port": 5432,
"username": "alice",
"password": "myPassword42",
"database": "blog-typeorm"
}
The respective connection URL would look as follows in Prisma ORM:
DATABASE_URL="postgresql://alice:myPassword42@localhost:5432/blog-typeorm"
Note that you can optionally configure the PostgreSQL schema by appending the schema
argument to the connection URL:
DATABASE_URL="postgresql://alice:myPassword42@localhost:5432/blog-typeorm?schema=myschema"
If not provided, the default schema called public
is being used.
Assume you have the following database connection details in ormconfig.json
:
{
"type": "mysql",
"host": "localhost",
"port": 3306,
"username": "alice",
"password": "myPassword42",
"database": "blog-typeorm"
}
The respective connection URL would look as follows in Prisma:
DATABASE_URL="mysql://alice:myPassword42@localhost:3306/blog-typeorm"
Assume you have the following database connection details in ormconfig.json
:
{
"type": "mssql",
"host": "localhost",
"port": 1433,
"username": "alice",
"password": "myPassword42",
"database": "blog-typeorm"
}
The respective connection URL would look as follows in Prisma:
DATABASE_URL="sqlserver://localhost:1433;database=blog-typeorm;user=alice;password=myPassword42;trustServerCertificate=true"
Assume you have the following database connection details in ormconfig.json
:
{
"type": "sqlite",
"database": "blog-typeorm"
}
The respective connection URL would look as follows in Prisma:
DATABASE_URL="file:./blog-typeorm.db"
2.3. Introspect your database using Prisma ORM
With your connection URL in place, you can introspect your database to generate your Prisma models:
npx prisma db pull
This creates the following Prisma models:
model typeorm_migrations {
id Int @id @default(autoincrement())
timestamp Int
name String
@@map("_typeorm_migrations")
}
model category {
id Int @id @default(autoincrement())
name String
post_categories_category post_categories_category[]
}
model post {
id Int @id @default(autoincrement())
title String
content String?
published Boolean @default(false)
authorId Int?
user user? @relation(fields: [authorId], references: [id])
post_categories_category post_categories_category[]
}
model post_categories_category {
postId Int
categoryId Int
category category @relation(fields: [categoryId], references: [id])
post post @relation(fields: [postId], references: [id])
@@id([postId, categoryId])
@@index([postId], name: "IDX_93b566d522b73cb8bc46f7405b")
@@index([categoryId], name: "IDX_a5e63f80ca58e7296d5864bd2d")
}
model profile {
id Int @id @default(autoincrement())
bio String?
userId Int? @unique
user user? @relation(fields: [userId], references: [id])
}
model user {
id Int @id @default(autoincrement())
name String?
email String @unique
post post[]
profile profile?
}
The generated Prisma models represent your database tables and are the foundation for your programmatic Prisma Client API which allows you to send queries to your database.
2.4. Create a baseline migration
To continue using Prisma Migrate to evolve your database schema, you will need to baseline your database.
First, create a migrations
directory and add a directory inside with your preferred name for the migration. In this example, we will use 0_init
as the migration name:
mkdir -p prisma/migrations/0_init
Next, generate the migration file with prisma migrate diff
. Use the following arguments:
--from-empty
: assumes the data model you're migrating from is empty--to-schema-datamodel
: the current database state using the URL in thedatasource
block--script
: output a SQL script
npx prisma migrate diff --from-empty --to-schema-datamodel prisma/schema.prisma --script > prisma/migrations/0_init/migration.sql
Review the generated migration to ensure everything is correct.
Next, mark the migration as applied using prisma migrate resolve
with the --applied
argument.
npx prisma migrate resolve --applied 0_init
The command will mark 0_init
as applied by adding it to the _prisma_migrations
table.
You now have a baseline for your current database schema. To make further changes to your database schema, you can update your Prisma schema and use prisma migrate dev
to apply the changes to your database.
2.5. Adjust the Prisma schema (optional)
The models that were generated via introspection currently exactly map to your database tables. In this section, you'll learn how you can adjust the naming of the Prisma models to adhere to Prisma ORM's naming conventions.
All of these adjustment are entirely optional and you are free to skip to the next step already if you don't want to adjust anything for now. You can go back and make the adjustments at any later point.
As opposed to the current snake_case notation of TypeORM models, Prisma ORM's naming conventions are:
- PascalCase for model names
- camelCase for field names
You can adjust the naming by mapping the Prisma model and field names to the existing table and column names in the underlying database using @@map
and @map
.
Also note that you can rename relation fields to optimize the Prisma Client API that you'll use later to send queries to your database. For example, the post
field on the user
model is a list, so a better name for this field would be posts
to indicate that it's plural.
You can further completely remove model that represents the TypeORM migrations table (called _typeorm_migrations
here) from the Prisma schema.
Here's an adjusted version of the Prisma schema that addresses these points:
model Category {
id Int @id @default(autoincrement())
name String
postsToCategories PostToCategories[]
@@map("category")
}
model Post {
id Int @id @default(autoincrement())
title String
content String?
published Boolean @default(false)
authorId Int?
author User? @relation(fields: [authorId], references: [id])
postsToCategories PostToCategories[]
@@map("post")
}
model PostToCategories {
postId Int
categoryId Int
category Category @relation(fields: [categoryId], references: [id])
post Post @relation(fields: [postId], references: [id])
@@id([postId, categoryId])
@@index([postId], name: "IDX_93b566d522b73cb8bc46f7405b")
@@index([categoryId], name: "IDX_a5e63f80ca58e7296d5864bd2d")
@@map("post_categories_category")
}
model Profile {
id Int @id @default(autoincrement())
bio String?
userId Int? @unique
user User? @relation(fields: [userId], references: [id])
@@map("profile")
}
model User {
id Int @id @default(autoincrement())
name String?
email String @unique
posts Post[]
profile Profile?
@@map("user")
}
Step 3. Install Prisma Client
As a next step, you can install Prisma Client in your project so that you can start replacing the database queries in your project that are currently made with TypeORM:
npm install @prisma/client
Step 4. Replace your TypeORM queries with Prisma Client
In this section, we'll show a few sample queries that are being migrated from TypeORM to Prisma Client based on the example routes from the sample REST API project. For a comprehensive overview of how the Prisma Client API differs from TypeORM, check out the API comparison page.
First, to set up the PrismaClient
instance that you'll use to send database queries from the various route handlers. Create a new file named prisma.ts
in the src
directory:
touch src/prisma.ts
Now, instantiate PrismaClient
and export it from the file so you can use it in your route handlers later:
import { PrismaClient } from '@prisma/client'
export const prisma = new PrismaClient()
4.1. Replacing queries in GET
requests
The REST API has three routes that accept GET
requests:
/feed
: Return all published posts/filterPosts?searchString=SEARCH_STRING
: Filter returned posts bySEARCH_STRING
/post/:postId
: Returns a specific post
Let's dive into the route handlers that implement these requests.
/feed
The /feed
handler is currently implemented as follows:
import { getManager } from 'typeorm'
import { Post } from '../entity/Post'
export async function feedAction(req, res) {
const postRepository = getManager().getRepository(Post)
const publishedPosts = await postRepository.find({
where: { published: true },
relations: ['author'],
})
res.send(publishedPosts)
}
Note that each returned Post
object includes the relation to the author
it's associated with. With TypeORM, including the relation is not type-safe. For example, if there was a typo in the relation that is retrieved, your database query would fail only at runtime – the TypeScript compiler does not provide any safety here.
Here is how the same route is implemented using Prisma Client:
import { prisma } from '../prisma'
export async function feedAction(req, res) {
const publishedPosts = await prisma.post.findMany({
where: { published: true },
include: { author: true },
})
res.send(publishedPosts)
}
Note that the way how Prisma Client includes the author
relation is absolutely type-safe. The TypeScript compiler would throw an error if you were trying to include a relation that does not exist on the Post
model.
/filterPosts?searchString=SEARCH_STRING
The /filterPosts
handler is currently implemented as follows:
import { getManager, Like } from 'typeorm'
import { Post } from '../entity/Post'
export async function filterPostsAction(req, res) {
const { searchString } = req.query
const postRepository = getManager().getRepository(Post)
const filteredPosts = await postRepository.find({
where: [
{ title: Like(`%${searchString}%`) },
{ content: Like(`%${searchString}%`) },
],
})
res.send(filteredPosts)
}
With Prisma ORM, the route is implemented as follows:
import { prisma } from '../prisma'
export async function filterPostsAction(req, res) {
const { searchString } = req.query
const filteredPosts = prisma.post.findMany({
where: {
OR: [
{
title: { contains: searchString },
},
{
content: { contains: searchString },
},
],
},
})
res.send(filteredPosts)
}
Note that TypeORM by default combines several where
conditions with an implicit OR
operator. Prisma ORM on the other hand combines several where
conditions with an implicit AND
operator, so in this case the Prisma Client query needs to make the OR
explicit.
/post/:postId
The /post/:postId
handler is currently implemented as follows:
import { getManager } from 'typeorm'
import { Post } from '../entity/Post'
export async function getPostByIdAction(req, res) {
const { postId } = req.params
const postRepository = getManager().getRepository(Post)
const post = await postRepository.findOne(postId)
res.send(post)
}
With Prisma ORM, the route is implemented as follows:
import { prisma } from '../prisma'
export async function getPostByIdAction(req, res) {
const { postId } = req.params
const post = await prisma.post.findUnique({
where: { id: postId },
})
res.send(post)
}
4.2. Replacing queries in POST
requests
The REST API has three routes that accept POST
requests:
/user
: Creates a newUser
record/post
: Creates a newPost
record/user/:userId/profile
: Creates a newProfile
record for aUser
record with a given ID
/user
The /user
handler is currently implemented as follows:
import { getManager } from 'typeorm'
import { User } from '../entity/User'
export async function createUserAction(req, res) {
const { name, email } = req.body
const userRepository = getManager().getRepository(User)
const newUser = new User()
newUser.name = name
newUser.email = email
userRepository.save(newUser)
res.send(newUser)
}
With Prisma ORM, the route is implemented as follows:
import { prisma } from '../prisma'
export async function createUserAction(req, res) {
const { name, email } = req.body
const newUser = await prisma.user.create({
data: {
name,
email,
},
})
res.send(newUser)
}
/post
The /post
handler is currently implemented as follows:
import { getManager } from 'typeorm'
import { Post } from '../entity/Post'
import { User } from '../entity/User'
export async function createDraftAction(req, res) {
const { title, content, authorEmail } = req.body
const userRepository = getManager().getRepository(User)
const user = await userRepository.findOne({ email: authorEmail })
const postRepository = getManager().getRepository(Post)
const newPost = new Post()
newPost.title = title
newPost.content = content
newPost.author = user
postRepository.save(newPost)
res.send(newPost)
}
With Prisma ORM, the route is implemented as follows:
import { prisma } from '../prisma'
export async function createDraftAction(req, res) {
const { title, content, authorEmail } = req.body
const newPost = await prisma.post.create({
data: {
title,
content,
author: {
connect: { email: authorEmail },
},
},
})
res.send(newPost)
}
Note that Prisma Client's nested write here save an initial query where first the User
record needs to be retrieved by its email
. That's because, with Prisma Client you can connect records in relations using any unique property.
/user/:userId/profile
The /user/:userId/profile
handler is currently implemented as follows:
import { getManager } from 'typeorm'
import { Profile } from '../entity/Profile'
import { User } from '../entity/User'
export async function setBioForUserAction(req, res) {
const { userId } = req.params
const { bio } = req.body
const userRepository = getManager().getRepository(User)
const user = await userRepository.findOne(userId, {
relations: ['profile'],
})
const profileRepository = getManager().getRepository(Profile)
user.profile.bio = bio
profileRepository.save(user.profile)
res.send(user)
}
With Prisma ORM, the route is implemented as follows:
import { prisma } from '../prisma'
export async function setBioForUserAction(req, res) {
const { userId } = req.params
const { bio } = req.body
const user = await prisma.user.update({
where: { id: userId },
data: {
profile: {
update: {
bio,
},
},
},
})
res.send(user)
}
4.3. Replacing queries in PUT
requests
The REST API has one route that accept a PUT
request:
/addPostToCategory?postId=POST_ID&categoryId=CATEGORY_ID
: Adds the post withPOST_ID
to the category withCATEGORY_ID
Let's dive into the route handlers that implement these requests.
/addPostToCategory?postId=POST_ID&categoryId=CATEGORY_ID
The /addPostToCategory?postId=POST_ID&categoryId=CATEGORY_ID
handler is currently implemented as follows:
import { getManager } from 'typeorm'
import { Post } from '../entity/Post'
import { Category } from '../entity/Category'
export async function addPostToCategoryAction(req, res) {
const { postId, categoryId } = req.query
const postRepository = getManager().getRepository(Post)
const post = await postRepository.findOne(postId, {
relations: ['categories'],
})
const categoryRepository = getManager().getRepository(Category)
const category = await categoryRepository.findOne(categoryId)
post.categories.push(category)
postRepository.save(post)
res.send(post)
}
With Prisma ORM, the route is implemented as follows:
import { prisma } from '../prisma'
export async function addPostToCategoryAction(req, res) {
const { postId, categoryId } = req.query
const post = await prisma.post.update({
data: {
postsToCategories: {
create: {
category: {
connect: { id: categoryId },
},
},
},
},
where: {
id: postId,
},
})
res.send(post)
}
Note that this Prisma Client can be made less verbose by modeling the relation as an implicit many-to-many relation instead. In that case, the query would look as follows:
const post = await prisma.post.update({
data: {
categories: {
connect: { id: categoryId },
},
},
where: { id: postId },
})
More
Implicit many-to-many relations
Similar to the @manyToMany
decorator in TypeORM, Prisma ORM allows you to model many-to-many relations implicitly. That is, a many-to-many relation where you do not have to manage the relation table (also sometimes called JOIN table) explicitly in your schema. Here is an example with TypeORM:
import {
Entity,
PrimaryGeneratedColumn,
Column,
ManyToMany,
JoinTable,
} from 'typeorm'
import { Category } from './Category'
@Entity()
export class Post {
@PrimaryGeneratedColumn()
id: number
@ManyToMany((type) => Category, (category) => category.posts)
@JoinTable()
categories: Category[]
}
import { Entity, PrimaryGeneratedColumn, Column, ManyToMany } from 'typeorm'
import { Post } from './Post'
@Entity()
export class Category {
@PrimaryGeneratedColumn()
id: number
@ManyToMany((type) => Post, (post) => post.categories)
posts: Post[]
}
If you generate and run a migration with TypeORM based on these models, TypeORM will automatically create the following relation table for you:
-- Table Definition ----------------------------------------------
CREATE TABLE post_categories_category (
"postId" integer REFERENCES post(id) ON DELETE CASCADE,
"categoryId" integer REFERENCES category(id) ON DELETE CASCADE,
CONSTRAINT "PK_91306c0021c4901c1825ef097ce" PRIMARY KEY ("postId", "categoryId")
);
-- Indices -------------------------------------------------------
CREATE UNIQUE INDEX "PK_91306c0021c4901c1825ef097ce" ON post_categories_category("postId" int4_ops,"categoryId" int4_ops);
CREATE INDEX "IDX_93b566d522b73cb8bc46f7405b" ON post_categories_category("postId" int4_ops);
CREATE INDEX "IDX_a5e63f80ca58e7296d5864bd2d" ON post_categories_category("categoryId" int4_ops);
If you introspect the database with Prisma ORM, you'll get the following result in the Prisma schema (note that some relation field names have been adjusted to look friendlier compared to the raw version from introspection):
model Category {
id Int @id @default(autoincrement())
name String
postsToCategories PostToCategories[]
@@map("category")
}
model Post {
id Int @id @default(autoincrement())
title String
content String?
published Boolean @default(false)
authorId Int?
author User? @relation(fields: [authorId], references: [id])
postsToCategories PostToCategories[]
@@map("post")
}
model PostToCategories {
postId Int
categoryId Int
category Category @relation(fields: [categoryId], references: [id])
post Post @relation(fields: [postId], references: [id])
@@id([postId, categoryId])
@@index([postId], name: "IDX_93b566d522b73cb8bc46f7405b")
@@index([categoryId], name: "IDX_a5e63f80ca58e7296d5864bd2d")
@@map("post_categories_category")
}
In this Prisma schema, the many-to-many relation is modeled explicitly via the relation table PostToCategories
.
By adhering to the conventions for Prisma ORM relation tables, the relation could look as follows:
model Category {
id Int @id @default(autoincrement())
name String
posts Post[]
@@map("category")
}
model Post {
id Int @id @default(autoincrement())
title String
content String?
published Boolean @default(false)
authorId Int?
author User? @relation(fields: [authorId], references: [id])
categories Category[]
@@map("post")
}
This would also result in a more ergonomic and less verbose Prisma Client API to modify the records in this relation, because you have a direct path from Post
to Category
(and the other way around) instead of needing to traverse the PostToCategories
model first.
If your database provider requires tables to have primary keys then you have
to use explicit syntax, and manually create the join model with a primary key.
This is because relation tables (JOIN tables) created by Prisma ORM (expressed via @relation
) for many-to-many relations using implicit syntax do not have primary keys.